

ARC STUD WELDING

TABLE OF CONTENTS

Page
Stud Welding Process
Wear Studs
Design Considerations
Standard Arc Studs & Part Numbers
Koco Stud Welding Equipment
Koco Stud Welding Guns
Headed Concrete Anchors
Headed Shear Connectors
Headed Concrete Anchors and Shear Connectors – Standard Sizes
Arc Stud Weld Inspection (Visual)16
Composite Beam Construction17
Consumables

Drawn Arc **Stud Welding**

Stud welding with ceramic ferrule

Stud welding with shielding gas

•

Short-cycle stud welding with or without shielding gas

The stud is placed against the workplace.

The stud is lifted off, while current is flowing, thus creating an arc.

The arc melts the surfaces of stud and workpiece.

The stud is plunged into the weld pool.

A cross-sectional joint is achieved.

The Selection

of the **Process**

Process	Stud welding with ceramic ferrule	Stud welding with shielding gas	Short-cycle stud welding	Stud welding with tip ignition
minimum sheet				
thickness t	1/4 d	1/8 d	1/8 d	1/10 d, min. 0,5 mm
maximum stud	♥ 25	♦ 12 (16)	♥ 12	¥8
diameter d for	← 16	← 6	← 8	← 8
welding from	★ 20	↑ 8	↑ 10	↑ 8
different positions				(for aluminium 6 in all cases)
suitable surface	bright metal, rolling	bright metal, rolling	bright metal, rolling	bright metal, thin
conditions 1)	skin, primer suitable	skin, primer suitable	skin, surface rust,	layer of oil, galvanised
	for welding, surface	for welding, surface	thin layer of oil,	(with a possible limit
	rust, thin layer of oil.	rust, thin layer of oil	zinc coating.	to the stud diameter.
		zinc coating.		
unsuitable surface	hot dip-galvanising,	loose layers of scaling,	loose layers of scaling,	zinc coating of more
conditions 1)	loose layers of	heavily corroded,	heavily corroded,	than 15 µm, coating with
	scaling, heavily	protective coating.	coating with organic	organic material,
	corroded, protective		material.	coating with insulating
	coating.			material (e.g.
				anodised aluminium.
common	studs with more than	studs from M 6 to M 12	studs from 5 to 10mm ø	for thin metal sheets,
applications	8 mm ø in steel and	in downhand position,	without shielding of	especially stainless
	boiler construction,	especially with	the weld pool in	steel and aluminium,
	and shipbuilding, on	automatic feeding	case of average	and in case of high-
	surfaces only coarsely	of studs.	quality requirements	grade requirements for
	cleaned, deep		for the shape of the	an undamaged visible
	penetration, suitable for		weld collar. In case	reverside side.
	field welding.		of high-grade	
			requirements, shielding	
			gas should be used.	

¹⁾ Here, we can give only general hints without any commitment or warranty on our part. The conditions must be tested in each individual case. Basically, a higher degree of surface cleanliness is required for shorter welding times. The best results are always achieved on bright metal surfaces.

ArcFix Wear Studs

Applications for this cost cutting technique:

- Deep Mining Industry
- Open Pit Mines
- Quarries
- Tunneling
- Steelworks
- Ore Preparing
- Repair-shops for building machines
- Manufacturers of mining and building machines

Main benefits:

- High abrasion resistance
- Quick application on site
- Permanent protection

Studs will not pop off, even when shovels or plates buckle.

• Cost cutting

In comparison with conventional welding, stud welding takes only a quarter of the time for the same surface. Therefore, you save on electric power, and reduce heat with the consequence of less risk of warping.

M16 Diameter M20 Diameter Hardness: 56 - 60 HRc.

ArcFix - Wear Studs

PRIMARY DESIGN CONSIDERATIONS

PARENT METAL ANALYSIS

ARC stud welding can only be considered if the parent metal is weldable. Proper results can be produced with standard techniques only when low carbon or low alloy steel or austenitic stainless steels are used as parent metals. Other steel alloys can be welded, but may require heat treatment or other special techniques to develop full weld strength.

Some brass, copper and aluminium alloys can also be stud welded. However, brass, copper and exotic metals are best welded by the CD method.

Because there are so many alloys, it is difficult to cover all variations here. When parent metal analysis is questionable, call your ARCFIX sales engineer for help.

Quite often, for instance, weld qualities can only be determined through actual mechanical testing of a prototype sample. We maintain facilities for this purpose and your ARCFIX sales engineer should be called upon to provide sampling and test data service whenever necessary.

Fastener Design Ratio

Our experience has shown that to assure complete fastener strength development, the parent metal thickness should be at least 1/3 of the weld base diameter of the stud.

For application where strength is not the primary requirement, the parent metal thickness may be reduced to a minimum of 1/5 the weld base diameter. By staying above this minimum ratio, complete cross-sectional-area weld fusion without burn-through or excessive distortion of the parent metal, is achievable.

Selecting the Proper Stud

It is impossible to include specifications of all the various styles and sizes that have been produced and are readily available. Therefore, the purchaser is

not limited in choice to those shown in the following pages. In order to achieve lowest fastener cost, first consideration should always be given to:

Ordering Studs

Follow "To Order" instructions.

- 1. Standard stud types
- 2. Standard lengths and diameters
- 3. Standard material composition

Standard Studs

Each of the following specification sheets detail stud styles that have been developed through a long history of usage and manufacturing experience. These specifications were developed to establish economical, useful, standard dimensions. The dimensional limits given do not, however, preclude our ability to manufacture stud welding fasteners with dimensions outside the established figures.

Special Studs

Most normal machining operations – cross drilling, slotting, bending, swaging, piercing, etc – are available in combination with many of the studs detailed on the specification sheets. Infinite styles of studs can be produced through these secondary machining operations. Depending upon the application, a special stud may provide even greater in-use economies than a standard stud. Consult your ARCFIX sales engineer: we may already have designed your "special".

There are many critical dimensions in manufacturing. ARCFIX welding studs give consistent welding results.

One important note: After weld (AWL) length is the length the fastener has been engineered for. However, arc welding studs up through 16mm diameter reduce approximately 3mm in length in the welding process; larger diameters will reduce 5mm. The studs, as shipped, will be correspondingly longer than the desired AW length.

Follow "To Order" instructions given for specific studs ordered:

"To Order": Specify type of stud; quantity; TxL (AWL) dimensions; type of material and arc shields or any other dimensions necessary.

"ARCFIX ALSO SUPPLY ALUMINIUM ARC STUDS TO ORDER. P.O.A."

STANDARD ARC STUDS

FULL THREAD (FT)

NO THREAD

REDUCED BASE (FRB)

TAPPED THREAD

Arcfix Standard Arc Stud Load Strengths

	LO	V CARBON STE	EL	STAINLESS STEEL		
Thread Size	Fastening Torque (Nm)	Ultimate Tensile (kn)	Ultimate Shear Load (kn)	Fastening Torque (Nm)	Ultimate Tensile (kn)	Ultimate Shear Load (kn)
6mm	5.8	8.9	6.7	8.5	12.8	9.6
8mm	12.6	14.4	10.8	14.9	20.8	15.6
10mm	20.8	21.4	16.1	26.7	30.8	23.1
12mm	45.8	38.9	29.2	58.4	56.9	42.7
16mm	98.3	63.2	47.4	125.4	92.5	68.4
20mm	123.2	93.0	69.7	172.9	133.4	100.1
24mm	187.6	129.0	97.6	263.1	185.6	138.8
Material	C – 0.23% max P – 0.04% max Mn – 0.60% max S – 0.05% max			AISI grade – 304 Other grades available on request		
Mechanical Properties	Tensile			Values for vari	ous grades availa	ble on request

These values should be used as a guide only, it is impractical to provide precise torque loadings for all conditions.

STANDARD – ARC STUDS & PART NUMBERS

Mild Steel Arc Studs

Length	M6	M8	M10
20mm	AS11-06-020	AS11-08-020	AS11-10-020
25mm	AS11-06-025	AS11-08-025	AS11-10-025
30mm	AS11-06-030	AS11-08-030	AS11-10-030
35mm	AS11-06-035	AS11-08-035	AS11-10-035
40mm	AS11-06-040	AS11-08-040	AS11-10-040
45mm	AS11-06-045	AS11-08-045	AS11-10-045
50mm	AS11-06-050	AS11-08-050	AS11-10-050
55mm	AS11-06-055	AS11-08-055	AS11-10-055
60mm	AS11-06-060	AS11-08-060	AS11-10-060
65mm	AS11-06-065	AS11-08-065	AS11-10-065
70mm			AS11-10-070
75mm			AS11-10-075
80mm			AS11-10-080
85mm			AS11-10-085
90mm			AS11-10-090
95mm			AS11-10-095
100mm			AS11-10-100

Length	M12	M16	M20
20mm	AS11-12-020	AS11-16-020	AS11-20-020
25mm	AS11-12-025	AS11-16-025	AS11-20-025
30mm	AS11-12-030	AS11-16-030	AS11-20-030
35mm	AS11-12-035	AS11-16-035	AS11-20-035
40mm	AS11-12-040	AS11-16-040	AS11-20-040
45mm	AS11-12-045	AS11-16-045	AS11-20-045
50mm	AS11-12-050	AS11-16-050	AS11-20-050
55mm	AS11-12-055	AS11-16-055	AS11-20-055
60mm	AS11-12-060	AS11-16-060	AS11-20-060
65mm	AS11-12-065	AS11-16-065	AS11-20-065
70mm	AS11-12-070	AS11-16-070	AS11-20-070
75mm	AS11-12-075	AS11-16-075	AS11-20-075
80mm	AS11-12-080	AS11-16-080	AS11-20-080
85mm	AS11-12-085	AS11-16-085	AS11-20-085
90mm	AS11-12-090	AS11-16-090	AS11-20-090
95mm	AS11-12-095	AS11-16-095	AS11-20-095
100mm	AS11-12-100	AS11-16-100	AS11-20-100

Add Suffix to Part Number to Indicate Stud Type.

FT = Full TreadEg. AS11-12-050FTRB = Reduced BaseEg. AS11-12-050RBPT = Part Thread (as per customer request)

STANDARD – ARC STUDS & PART NUMBERS

Stainless Steel Arc Studs

Length	M6	M8	M10
20mm	AS12-06-020	AS12-08-020	AS12-10-020
25mm	AS12-06-025	AS12-08-025	AS12-10-025
30mm	AS12-06-030	AS12-08-030	AS12-10-030
35mm	AS12-06-035	AS12-08-035	AS12-10-035
40mm	AS12-06-040	AS12-08-040	AS12-10-040
45mm	AS12-06-045	AS12-08-045	AS12-10-045
50mm	AS12-06-050	AS12-08-050	AS12-10-050
55mm	AS12-06-055	AS12-08-055	AS12-10-055
60mm	AS12-06-060	AS12-08-060	AS12-10-060
65mm	AS12-06-065	AS12-08-065	AS12-10-065
70mm			AS12-10-070
75mm			AS12-10-075
80mm			AS12-10-080
85mm			AS12-10-085
90mm			AS12-10-090
95mm			AS12-10-095
100mm			AS12-10-100

Length	M12	M16	M20
20mm	AS12-12-020	AS12-16-020	AS12-20-020
25mm	AS12-12-025	AS12-16-025	AS12-20-025
30mm	AS12-12-030	AS12-16-030	AS12-20-030
35mm	AS12-12-035	AS12-16-035	AS12-20-035
40mm	AS12-12-040	AS12-16-040	AS12-20-040
45mm	AS12-12-045	AS12-16-045	AS12-20-045
50mm	AS12-12-050	AS12-16-050	AS12-20-050
55mm	AS12-12-055	AS12-16-055	AS12-20-055
60mm	AS12-12-060	AS12-16-060	AS12-20-060
65mm	AS12-12-065	AS12-16-065	AS12-20-065
70mm	AS12-12-070	AS12-16-070	AS12-20-070
75mm	AS12-12-075	AS12-16-075	AS12-20-075
80mm	AS12-12-080	AS12-16-080	AS12-20-080
85mm	AS12-12-085	AS12-16-085	AS12-20-085
90mm	AS12-12-090	AS12-16-090	AS12-20-090
95mm	AS12-12-095	AS12-16-095	AS12-20-095
100mm	AS12-12-100	AS12-16-100	AS12-20-100

Add Suffix to Part Number to Indicate Stud Type.

FT = Full Tread	Eg. AS12-12-050FT
RB = Reduced Base	Eg. AS12-12-050RB
PT = Part Thread (as p	er customer request)

KÖCO – Compact Stud Welding Equipment

ELOTOP

All models of the ELOTOP compact stud welding equipment series are laid out for top performance as well as highly cost-effective drawn-arc stud welding. Through their special features they are designed for rough wear on building sites and continuous operation. Microprocessor controls, current regulation and high performance ensures precise repeatability and optimum welding results, even under a great variety of conditions. The intelligent self-diagnosis system increases productivity through minimizing machine downtime.

ELOTOP COMPACT STUD WELDING EQUIPMENT

KÖCO – Compact Stud Welding Equipment

SERIES ELOTOP

Technical data	502	802	1002	1702	2002	3002
Stud welding with ceramic ferrule						
Weldable stud range Ø (mm)	3 - 8	3 - 12	3 - 14	3 - 20	3 - 22	6 - 25
Short cycle stud welding						
Weldable stud range Ø (mm)	3 - 6	3 - 8	3 - 10	3 - 12	3 - 12	6 - 12
Stud welding with shielding gas						
Weldable stud range Ø (mm)	3 - 8	3 - 10	3 - 12	3 - 16	3 - 16	3 - 16
Max: current (A)	450	800	1100	1800	2300	3500
Current setting range (A)	450	50 -750	150 - 1000	150 - 1600	300 - 2000	300 -2600
Time setting range (ms)	20 - 450	20 -600	20 - 1000	20 - 1500	20 - 1500	20 -2000
Max. stud/min. at Ø (mm)	15/3	32/3	49/3	50/3	52/3	50/6
	4/8	3/12	4/14	2/20	4/22	6/25
Self-diagnosis: overheating	•	•	•	•	•	•
short circuit control	-	-	-	-	-	-
mains phase failure	•	•	•	•	•	•
malfunction of pilot arc	-	•	•	•	•	•
Fully controlled thyristor bridge	-	•	•	•	•	•
Microprocessor control	•	•	•	•	•	•
Constant current regulation	-	•	•	•	•	•
Repeat cycle lock	•	•	•	•	•	•
Mains connection 50/60 Hz 3-phase (V)	400	230/400	230/400	230/400	230/400	230/400
Mains connection special voltages (V)	0	0	0	0	0	0
Mains plug at 400 V (A)	16	32	32	63	63/125	125
4-wire mains cable at 400 V (m/mm²)	5/2.5	5/4	5/4	5/10	5/16	5/16
Mains fusing time-lag at 230/400 V (A)	35/16	35/25	50/35	100/63	160/80	200/125
Mains power consumption at% ED (kVA)	1	1.4/3.2/100	2.5/7/100	2.25/9/100	2.5/7/100	8/13/100
	29	55/38/7	73/43/12	121/59/17	156/93/25	187/145/52
Tolerance range mains voltage (%)	-15/+6	-15/+6	-15/+6	-15/+6	-15/+6	-15/+6
Dust and moisture protection of control unit	•	•	•	•	•	•
Class of protection	IP 23					
Cooling	F	F	F	F	F	F
Steel housing, powder-coated	•	•	•	•	•	•
Housing dimensions (L x W x H) mm	375x220x285	530x305x350	600x325x370	700x415x460	805x430x530	960x610x625
Swivel castors/fixed castors	-	2/2	2/2	2/2	2/2	2/2
Handle	1	2	1	1	1	1
Lifting eye	-	1	1	1	1	1
Weight (abt. kg)	28	50	87	160	185	355
Shielding gas equipment	•	•	•	0	0	0
Stud counter	-	0	0	0	0	0
Interface for automatic components	-	0	0	0	0	0
Stud welding guns: SK 14	•	•	0	0	0	0
K 22	0	0	•	0	0	0
K 22-D	0	0	0	•	0	0
К 24	-	-	-	-	•	0
K 26	-	-	-	-	-	•

• = standard, \circ = optional, - = not available

S Welding under increased electrically hazardous conditions permissible, CE-Labelling according to EN 60974-1 etc.

Upadate 31.3.2006. Subject to technical modifications.

KÖCO – Stud Welding Guns

CLASSIC

The CLASSIC series of stud welding guns are technologically advanced high performance tools for drawn arc stud welding. They are designed for comfortable operation and known for their sturdiness and reliability. The range includes guns for every application, matching accessories are available. The precision technology of KÖCO stud welding guns ensures repeatability and produces first-class welding results, even under difficult operating conditions.

An adjustable hydraulic plunge damper is standard in the K 22-D, K 24 and K 26 guns, to damp the stud movement when it plunged into the welding pool (recommended for welding studs approx. 14 mm ø).

All guns are compatible with most commercially available stud welding systems.

CLASSIC STUD WELDING GUNS

KÖCO – Stud Welding Guns

SERIES CLASSIC

Technical data	SK 14	K 22	K 22-D	K 24	K 26
Stud welding with ceramic ferrule					
Weldable stud range Ø (mm)	4 - 12	4 - 14	4 - 19	13 - 22	13 - 25
Short cycle stud welding					
Weldable stud range Ø (mm)	3 - 12	6 - 12	0	-	-
Stud welding with shielding gas					
Weldable stud range Ø (mm)	3 - 12	3 - 16	o		-
Adjustable hydraulic plunge damper					
for studs from app. 14 mm Ø	-	o	•	•	•
Lifting ring system with length compensation	-	•	•	•	•
Compensation for stud					
length variations up to (mm)	-	8	8	8	8
Standard support with legs	2	2	2	2	3
Lifting range from to (mm)	1 - 4.5	1 - 4.5	1 - 4.5	2.5 - 6	2.5 - 6
Input voltage lifting coil (V=)	60 - 90	60 - 90	60 - 90	60 - 90	60 - 90
Welding cable (m/mm²)	5/35	2/50	2/50	2/95	2/120
Welding cable plug (mm²)	35	50/70	50/70	95	120
Control cable (m/mm²)	5/4x1.0	2/4x1.0	2/4x1.0	2/4x1.0	2/4x1.0
Control cable pulg (4 wire)	•	•	•	•	•
Body:					
fibre-glass reinforced polyamide (black)	•	•	•	•	•
Length (excluding chuck) (mm)	185	175	175	250	300
Body Ø approx. (mm)	50	60	60	60	63
Height (including handle) (mm)	150	165	165	220	240
Weight excluding cables app. (kg)	0.9	1.3	1.3	1.4	2.6

• = standard, \circ = optional, - = not available

Upadate 31.3.2006. Subject to technical modifications.

HEADED CONCRETE ANCHOR

General Purpose Studs used for other than shear transfer in composite beam design and construction.

Ν	NOTE: L = manufactured length before welding						
Shank	Diameter (d)	Length (L) tolerance	Head Diameter tolerance	Minimum head height HT			
12.7	+0.00 -0.25	±1.6	25.4±0.4	7.1			
15.9	+0.00 -0.25	±1.6	31.7±0.4	7.1			

DIMENSIONS IN MILLIMETRES

MATERIAL	LOW CARBON STEEL AS1443 S1010 to S1020 or K1010 to K1020		
MECHANICAL PROPERTIES	Tensile Elongation	()	

FERRULE

NOTE: Ferrules are component parts of studs

NOT SOLD SEPARATELY

*HEADED CONCRETE ANCHORS are available for welding to flat surfaces, inside angles, and outside angles. Each of these applications requires the proper style stud and ferrule, so please specify your application when ordering studs.

Ferrule exterior dimensions available on request.

HEADED SHEAR CONNECTORS

Headed Shear Connector are used as an essential component in composite beam design and construction.

hank Diameter (d)	r Length (L) tolerance	Head Diameter tolerance	Minimum head height HT		
19.0 +0.00 -0.38	±1.6	31.7±0.4	9.5		
22.2 +0.00 -0.38	±1.6	34.9±0.4	9.5		
[DIMENSIONS		S L		
MATERIAL	AS144	CARBON STEEL 5 S1010 to S1020 (1010 to K1020			
MECHANICAL PROPERTIES	Yield Elongation	410MP 345MP area509	Pa (min) 12%		£
	IX STUDS ME RD, AS1554 rts available u			> D ≼	

NOTE: Ferrules are component parts of studs NOT SOLD SEPARATELY

***HEADED SHEAR CONNECTORS** are available for welding to flat surfaces, inside angles, and outside angles. Each of these applications require the proper style stud and ferrule, so please specify your application when ordering studs. Ferrule exterior dimensions available upon request.

Headed Concrete Anchors and Shear Connectors Standard Sizes

(Dimensions in millimeters)

CONCRETE ANCHORS

Part Number	Size	Weight Ea	Pack Qty
SC11-13-050	12.7 x 50	.079	250
SC11-13-075	12.7 x 75	.104	150
SC11-13-100	12.7 x 100	.129	125
SC11-16-075	16 x 75	.161	125
SC11-16-100	16 x 100	.199	100
SC11-16-150	16 x 150	.278	75

SHEAR CONNECTORS

Part Number	Size	Weight Ea	Pack Qty
SC11-19-075	19 x 75	.217	100
SC11-19-095	19 x 95	.259	75
SC11-19-100	19 x 100	.271	75
SC11-19-105	19 x 105	.281	75
SC11-19-115	19 x 115	.303	60
SC11-19-120	19 x 120	.313	60
SC11-19-125	19 x 125	.329	60
SC11-19-150	19 x 150	.379	50
SC11-19-175	19 x 175	.441	45
SC11-19-200	19 x 200	.485	40
SC11-22-100	22 x 100	.358	50
SC11-22-125	22 x 125	.435	50
SC11-22-150	22 x 150	.505	40
SC11-22-175	22 x 175	.589	40
SC11-22-200	22 x 200	.649	35

ALL THE ABOVE STUDS ARE MANUFACTURED AND NATA TESTED TO AS1554. CERTIFICATES AVAILABLE ON REQUEST LENGTHS INDICATED ARE AFTER WELD LENGTHS ACTUAL LENGTH IS 3 – 5mm LONGER

ARC STUD WELD INSPECTION (VISUAL)

The ARC stud weld can be visually inspected by observing the fillet at the base of the stud. The illustrations and comments below will assist you in visually judging the quality of the weld.

GOOD WELD

Full, even shiny fillet all around stud.

HOT WELD

Very shiny, low profile fillet extruding beyond outside of ferrule.

COLD WELD

Small, uneven, dull appearing fillet with fingers of metal extending through vents of ferrule.

SHORT PLUNGE OR HANG-UP

No fillet, no stud burn-off, or metal.

MISALIGNMENT

Partial or no fillet, undercut, stud not perpendicular to base, undercut base.

COMPOSITE-BEAM CONSTRUCTION

Even without the use of metal decking, composite beam construction is, in several ways, superior to slab-on-beam construction.

Composite design reduces steel weight.

Live load deflection is reduced because of the concrete's mass and thickness and the steel beam's depth.

Overall building height can be reduced because the beams are shallower – saving on heating, air-conditioning and exterior and interior wall costs.

Longer spans can be used with fewer columns, beams and connections. The results are larger rooms, more useable bay area, and more flexible floor plans. The structure goes up faster; fabrication costs come down. As stated, these benefits are attainable whether you use metal deck or through-deck welding. Consider, however, how much better composite beam construction is when you DO use metal deck and ARCFIX through-deck welding.

The job costs less. You don't have to erect wood forms then strip them away, then reerect them. The metal deck which provides a permanent form for the concrete, can also incorporate cellular sections for electrical cables. Ceilings are easier to hang.

concrete

You build better. Metal deck provides restraint for supporting members, stiffening the structure and giving better load distribution. The deck minimises deflection, reducing the amount of concrete needed. The concrete, itself, is better because the steel retains hydration needed for proper curing. You'll have fewer cracks, easier inspection.

You build safer. The metal deck provides a safer, more stable platform for workmen of all trades. Metal deck also eliminates a major construction headache – fire in the forms and shoring. Insurance rates are usually lower.

These are typical of the benefits you can look for in composite beam/weld-through metal deck construction. Actual savings will, of course, vary with the job.

steel beam

Cross section of a true composite beam: stud welded shear connectors transfer horizontal shear from slab to beam for maximum strength and load-bearing capacity. With most systems, as shown here, the metal deck provides a positive bond because of the "keying" of the concrete with the deck ribs. Accordingly, the deck itself can replace all or part of the bottom layer of reinforcing steel, for further economy.

CONSUMABLES

Stud Welding

Shear Connectors Threaded Arc Studs CD Studs CD Pins & Clips CD Welding Machines Arc Stud Welding Machines Stud Welding Machine Spares & Repairs

Distributed in Australia by

Antec Engineering Pty Limited

Web:antec.com.auPh:1300 55 34 73Email:anteceng@antec.com.au

NSW: VIC: QLD: WA: 02 9622 9622 03 8645 3222 07 3420 4099 08 6350 9600 08 8162 8700