KBS COATING BRUSHABLE

Wolman Wood and Fire Protection Gmbh

Chemwatch: 5517-11 Version No: 2.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 3

Issue Date: **07/12/2021** Print Date: **16/12/2021** S.GHS.AUS.EN

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier			
Product name	KBS COATING BRUSHABLE		
Chemical Name	Not Applicable		
Synonyms	Not Available		
Chemical formula	Not Applicable		
Other means of identification	Not Available		

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Product for construction chemicals.
Relevant identified uses	Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name	Wolman Wood and Fire Protection Gmbh		
Address	DrWolman-Strasse 31-33 Sinzheim 76547 Germany		
Telephone	+4972218000		
Fax	Not Available		
Website	Not Available		
Email	Anthony.Dean@antec.com.au		

Emergency telephone number

Association / Organisation	Antec Engineering Pty Limited		
Emergency telephone numbers	1300 55 34 73		
Other emergency telephone numbers	02 9622 9622 (NSW), 0477 734 099 (NT), 07 3420 4099 (QLD), 08 8244 8748 (SA), 03 8645 3222 (VIC), 08 6350 9601 (WA)		

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

Poisons Schedule	Not Applicable		
Classification [1]	Carcinogenicity Category 2, Reproductive Toxicity Category 1B, Hazardous to the Aquatic Environment Long-Term Hazard Category 3		
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI		

Label elements

Hazard pictogram(s)

Signal word Dange

Hazard statement(s)

H351	Suspected of causing cancer.	
H360FD	May damage fertility. May damage the unborn child.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.	
P280	Wear protective gloves and protective clothing.	
P273	Avoid release to the environment.	

Version No: 2.1

Issue Date: 07/12/2021 Print Date: 16/12/2021

Precautionary statement(s) Response

P308+P313

IF exposed or concerned: Get medical advice/ attention.

Precautionary statement(s) Storage

P405

Store locked up.

Precautionary statement(s) Disposal

P501

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight] Name	
13674-84-5	1-<10 tris(2-chloroisopropyl)phosphate	
138265-88-0	1-<2.5	zinc borate hydrate
Not Available	balance Ingredients determined not to be hazardous	
Legend:	Legend: 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

SECTION 4 First aid measures

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

If fumes, aerosols or combustion products are inhaled remove from contaminated area.

Skin Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- ▶ Seek medical attention in event of irritation
- Inhalation
- ▶ Other measures are usually unnecessary ▶ If swallowed do **NOT** induce vomiting
- Ingestion
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 Firefighting measures

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Advice for firefighters

Alert Fire Brigade and tell them location and nature of hazard.

- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- Fire Fighting DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
 - If safe to do so, remove containers from path of fire.
 - Equipment should be thoroughly decontaminated after use.

Non combustible.

Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of: Fire/Explosion Hazard

phosphorus oxides (POx) metal oxides

May emit poisonous fumes.

HAZCHEM

Not Applicable

Page 3 of 11

KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Version No: 2.1

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Neutralise/decontaminate residue (see Section 13 for specific agent). Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling		
Safe handling	 Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. DO NOT allow material to contact humans, exposed food or food utensils. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. Keep containers securely sealed when not in use. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Launder contaminated clothing before re-use. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained. 	
Other information	 Store in original containers. Keep containers securely sealed. No smoking, naked lights or ignition sources. Store in a cool, dry, well-ventilated area. Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. Observe manufacturer's storage and handling recommendations contained within this SDS. 	

Conditions for safe storage, including any incompatibilities

Suitable container	Drums. Polyethylene or polypropylene container. Packing as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 Avoid reaction with oxidising agents, bases and strong reducing agents. Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
KBS COATING BRUSHABLE	Not Available	Not Available		Not Available
Ingredient	Original IDLH		Revised IDLH	

Chemwatch: **5517-11**

Page 4 of 11 KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

Ingredient	Original IDLH	Revised IDLH
tris(2-chloroisopropyl)phosphate	Not Available	Not Available
zinc borate hydrate	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
tris(2-chloroisopropyl)phosphate	E	≤ 0.1 ppm	
zinc borate hydrate	> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)		
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the idverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a		

Exposure controls

Version No: 2.1

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

range of exposure concentrations that are expected to protect worker health.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

Eve and face protection

Safety glasses with side shields.Chemical goggles.

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or

Skin protection

national equivalent]
See Hand protection below

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be

Hands/feet protection

washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Chemwatch: 5517-11

Page 5 of 11 KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- · Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:

- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- · Poor when glove material degrades

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

- ► Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Respiratory protection

Version No: 2.1

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	A-AUS / Class1 P2	-
up to 50	1000	-	A-AUS / Class 1 P2
up to 50	5000	Airline *	-
up to 100	5000	-	A-2 P2
up to 100	10000	-	A-3 P2
100+			Airline**

* - Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Latridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important.

Required minimum protection factor	Maximum gas/vapour concentration present in air p.p.m. (by volume)	Half-face Respirator	Full-Face Respirator
up to 10	1000	@1@-AUS / Class1 @2@	-
up to 50	1000	-	@1@-AUS / Class 1 @2@
up to 50	5000	Airline *	-
up to 100	5000	-	@1@-2 @2@
up to 100	10000	-	@1@-3 @2@
100+			Airline**

^{* -} Continuous Flow ** - Continuous-flow or positive pressure demand

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

Appearance

Grey/ white liquid with a slight odour; mixes with water.

Chemwatch: **5517-11**Part Number:

Version No: 2.1

Page 6 of 11

KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

Physical state	Liquid	Relative density (Water = 1)	1.4
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Applicable
pH (as supplied)	8	Decomposition temperature	Not Available
Melting point / freezing point (°C)	~100	Viscosity (cSt)	60000
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Applicable	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Applicable	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Applicable	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Miscible	pH as a solution (%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	Accidental ingestion of the material may be damaging to the health of the individual.
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	Although the liquid is not thought to be an irritant (as classified by EC Directives), direct contact with the eye may produce transient discomfort characterised by tearing or conjunctival redness (as with windburn).
Chronic	There has been concern that this material can cause cancer or mutations, but there is not enough data to make an assessment. Ample evidence exists from experimentation that reduced human fertility is directly caused by exposure to the material. Ample evidence exists, from results in experimentation, that developmental disorders are directly caused by human exposure to the material. Based on experience with animal studies, exposure to the material may result in toxic effects to the development of the foetus, at levels which do not cause significant toxic effects to the mother. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
·	

KBS COATING BRUSHABLE	TOXICITY Not Available	IRRITATION Not Available
	TOXICITY	IRRITATION
tris(2- chloroisopropyl)phosphate	Dermal (rabbit) LD50: >2000 mg/kg ^[1] Inhalation(Rat) LC50; >4.6 mg/l4h ^[2]	Eye (rabbit): non-irritating* Skin (rabbit): mild (24 h):
	Oral (Rat) LD50; >500 mg/kg ^[1]	
	TOXICITY	IRRITATION
	Dermal (rabbit) LD50: >2000 mg/kg ^[1]	Eye: adverse effect observed (irritating) ^[1]
zinc borate hydrate	Inhalation(Rat) LC50; 4.95 mg/l4h ^[1]	Skin: no adverse effect observed (not irritating) ^[1]
	Oral (Rat) LD50; >5000 mg/kg ^[1]	

Chemwatch: **5517-11**Part Number:

Page 7 of 11 KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

Legend:

Version No: 2.1

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Non-chlorinated triphosphates have varying chemical, physical, toxicological and environmental properties. Blooming has been identified as a source of potential exposure (human and environmental) to triphosphate plasticisers / flame retardants. Blooming is the movement of an ingredient in rubber or plastic to the outer surface after curing. Blooming is quickened by increased temperature, and triphosphates are known to bloom from car interior plastics, TVs and computer monitors.

These substances are absorbed to various organs, particularly the liver and kidney but also the brain. Excretion is rapid and mainly in the urine. Animal testing shows that they have low to moderate acute toxicity, and do not significantly irritate the skin and eye. TCEP has caused convulsions, brain lesions and impaired performance in animal testing. These substances have not been found to cause developmental toxicity or birth defects, but may reduce fertility. Data suggests that they do not cause mutations.

Animal testing suggests that these substances, in particular TCEP, TDCPP and TDCiPP, can all cause tumours in various organs, including cancers. At high doses, they may also cause immunotoxicity.

For tris(2-chloro-1-methylethyl)phosphate (TCPP)

The flame retardant product supplied in the EU, marketed as TCPP, is actually a reaction mixture containing four isomers. The individual isomers in this reaction mixture are not separated or marketed. The individual components are never produced as such. These data are true for TCPP produced by all EU manufacturers. The other isomers in the mixture include bis(1-chloro-2-propyl)-2-chloropropyl phosphate (CAS 76025-08-6); bis(2-chloropropyl)-1-chloro-2-propyl phosphate (CAS 76049-15-5) and tris(2-chloropropyl)) phosphate (CAS 6145-73-9). The assumption is made that all isomers have identical properties in respect of risk assessment. The assumption is justified in part by the fact that they exhibit very similar chromatographic properties, even under conditions optimised to separate them. Predicted physicochemical properties differ to only a small extent.

Chlorinated alkyl phosphate esters (particularly TCPP) were identified as possible substitutes for the fire retardant pentabromodiphenyl ether They appear to be relatively persistent substances, and there is some human health concern. Three substances in this group have been characterised to a degree and serve as a read across reference for TCPP. They include tris(2-chlororethyl)phosphate (TCEP, CAS 115-96-8), tris[2-(chloro-1-chloromethyl)ethyl]phosphate (TDCP, CAS 13674-87-8) and 2,2-bis(chloromethyl)trimethylene bis[bis(2-chlorocethyl)phosphate] (V6, CAS 38051-10-4). Other flame retardants in this family, which do not appear as EU HPV (High Production Volume) substances, include tetrakis[2-(chloroethyl)ethylene)diphosphate (CAS 33125-86-9), tris (2,3-dichloro-1-propyl)phosphate (CAS 78-43-3, an isomer of TDCP))

Acute toxicity: The inhalation exposure studies in animals were somewhat equivocal and in general lacking in detailed information. One study yielded an LC50 of > 7 mg/L/4 hr. A limit test yielded an acute LC50 value of >4.6 mg/L/4h. No deaths occurred at this concentration. Toxic signs observed in this study, and in 2 further poorly reported studies, included mild lethargy, matted fur, acute bodyweight depression and convulsions. From the studies, it appears that TCPP is more toxic when administered whole body as aerosol than by nose-only exposure. This suggests that some of the systemic toxicity observed when TCPP is administered whole body may result from dermal or oral uptake, rather than inhalation. Therefore, it is concluded that TCPP is of low toxicity via the inhalation route.

Studies in rats indicated that TCPP is of moderate toxicity via the oral route of exposure, with LD50 values from the better quality studies ranging from 632 mg/kg up to 4200 mg/kg, with the majority of values determined to be <2000 mg/kg. Common clinical and macroscopic signs of toxicity observed on nearly all studies included depression, ataxia, hunched posture, lethargy, laboured respiration, increased salivation, partially closed eyelids, body tremors, pilo-erection, ptosis, haemorrhagic lungs and dark liver and/or kidneys. A NOAEL of 200 mg/kg can be identified for acute oral toxicity. This is taken from a 1996 study, in which no clinical signs of toxicity were observed in animals dosed with 200 mg/kg TCPP. Based on the results of the acute oral studies, TCPP should be classified with R22, harmful if swallowed. In a delayed neurotoxicity study conducted in hens, TCPP showed moderate toxicity. The principle effects were reduced mean body weight and food consumption, feather loss and cessation of laying. There was no evidence of inhibited plasma acetylcholinesterase or brain neurotoxic esterase enzyme levels. Therefore, there is no concern for acute delayed neurotoxicity for TCPP.

Studies in rats and rabbits indicated that TCPP is of low toxicity via the dermal route of exposure with LD50 values of >2000mg/kg. There is an extensive database in animals, indicating that TCPP is non-irritant in the rabbit eye and skin. The lack of any substantial skin or eye irritation and the lack of irritation observed in the acute inhalation studies suggest that TCPP would be unlikely to produce significant respiratory tract irritation.

Evidence from a guinea pig study as well as from a local lymph node assay, indicates that TCPP does not possess significant skin sensitisation potential. No information is available on the respiratory sensitisation potential of TCPP.

Repeat dose toxicity: A study is available in which male and female rats were fed diets containing TCPP for 13 weeks at concentrations corresponding to mean substance intake values of up to 1349 mg/kg/day and 1745 mg/kg/day for males and females respectively. This study indicated the liver and thyroid to be the main target organs affected by TCPP. Effects observed included statistically significant increases in absolute and relative liver weights in males at all doses and females at the two highest doses, periportal hepatocyte swelling in high dose groups and mild thyroid follicular cell hyperplasia in males at all doses and females at the highest dose. Based on the increase in both absolute and relative liver weights, accompanied by mild thyroid follicular cell hyperplasia observed in males of all dose groups, a LOAEL of 52 mg/kg/day is derived and taken forward to risk characterisation. This LOAEL is taken forward in preference to the NOAEL which was identified in a 4-week study in which rats were dosed with TCPP at concentrations of 0, 10, 100 and 1000 mg/kg/day, as it was derived from a study of longer duration. The 4-week study also showed the liver as the target organ, with increased liver weight changes observed in the high dose groups, accompanied by hepatocyte hypertrophy in all high-dose males and one mid-dose male and changes in ALAT activity in high-dose animals.

A two-week study in which rats were fed diets of TCPP at concentrations corresponding to mean substance intake values of up to 1636 mg/kg/day for males and 1517 mg/kg/day for females showed no major clinical signs of toxicity. There was a significant reduction in weight gain and food consumption in high dose males during week 2, but there were no other significant findings.

In a 2-generation reproductive toxicity study in which rats were fed TCPP in the diet over two successive generations, the low-dose of 99 mg/kg for females is considered to be the LOAEL for parental toxicity. This is based on decreased body weight and food consumption seen in mid and high dose parental animals and the effects on uterus weight seen in all dosed animals. For males, a NOAEL of approximately 85 mg/kg is derived for parental toxicity, based on decreased body weights, food consumption and organ weight changes observed at mid and high dose groups.

No data are available on inhalation and dermal repeated dose toxicity.

Genotoxicity: The mutagenic potential of TCPP has been well investigated *in vitro*. Evidence from several bacterial mutagenicity studies shows that TCPP is not a bacterial cell mutagen. TCPP was also shown to be non-mutagenic in fungi. In mammalian cell studies, TCPP did not induce forward mutations at the TK locus in L5178Y mouse lymphoma cells in one study, but in a second study, the result was considered equivocal (in the presence of rat liver S9 fraction). A confirmatory mouse lymphoma was conducted in accordance with the relevant regulatory guidelines. The results of the assay indicate that TCPP shows clastogenic activity *in vitro* in the presence of metabolic activation.

The main concern for TCPP is clastogenicity, owing to the clearly positive *in vitro* mouse lymphoma study. *In vivo*, TCPP was not clastogenic in a mouse bone marrow micronucleus test. TCPP did not induce an increase in chromosomal aberrations in a rat bone marrow cytogenetics assay. In order to further investigate the potential for TCPP to induce DNA damage, an *in vivo* Comet assay in the rat liver was conducted. The liver was chosen for comet analysis as TCPP caused an increased mutation frequency in the mouse lymphoma assay in the presence of S9 and also induced liver enlargement in repeat dose studies. Under the conditions of this study, TCPP did not induce DNA damage in the liver of rats treated with either 750 or 1500 mg/kg TCPP.

Overall, it is considered that TCPP is not genotoxic in vivo.

Carcinogenicity: TCPP is structurally similar to two other chlorinated alkyl phosphate esters, TDCP (tris [2-chloro-1-(chloromethyl)ethyl] phosphate) and TCEP (tris (2-chloroethyl) phosphate). TDCP and TCEP are non-genotoxic carcinogens, in vivo, and have agreed classifications of Carc Cat 3 R40. Based on the available repeat dose toxicity data for TCPP, supported by a qualitative read-across from

TRIS(2-CHLOROISOPROPYL)PHOSPHATE Chemwatch: 5517-11

Page 8 of 11 KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

TDCP and TCEP, there is a potential concern for carcinogenicity for TCPP by a nongenotoxic mechanism. No quantitative read-across can be performed since there are no insights into an underlying mode of action for TCEP and TDCP which would make a prediction on a relatively potency of TCPP possible. Therefore, as a reasonable worst case approach, a risk characterisation will be carried out for this end-point.

It is proposed that the effects observed in the 90-day study for TCPP are taken as a starting point for risk characterisation. If these effects were to progress to cancer, they would do so by a non-genotoxic mechanism. Therefore, it is proposed that the LOAEL of 52 mg/kg/day, identified from the 90-day study with TCPP, should be used as a basis for risk characterisation of the carcinogenicity endpoint.

Reproductive toxicity: In a two-generation reproductive toxicity study with TCPP, there were no treatment related effects in pre-coital time, mating index, female fecundity index, male and female fetility index, duration of gestation and post-implantation loss-implantation loss-implantati

mating index, female fecundity index, male and female fertility index, duration of gestation and post-implantation loss. There was no effect on sperm parameters at necropsy. In females, the length of the longest oestrus cycle and the mean number of cycles per animal were statistically significantly increased in high dose animals of both generations. A decrease in uterus weight was observed in all dosed females in F0 and in high dose females in F1. Effects were also noted on pituitary weights, significant in high dose females of both generations. A LOAEL of 99 mg/kg is derived for effects on fertility. This is based on effects on the effect on uterus weight seen in all dosed females in F0 and high dose females in F1.

Developmental toxicity: From the same study, a LOAEL of 99 mg/kg is derived for developmental toxicity. This is based on a treatment related effect on the number of runts observed in all TCPP-treated groups of the F0 generation.

In a separate study, no treatment-related effects on foetal mortality, implantation number,

resorption or foetal weight were observed following treatment of pregnant dams with TCPP. Cervical ribs and missing 13th ribs were noted at a low incidence in all treatment groups, but not in the control group. However, as a specific rib count undertaken in the 2-generation study did not reveal an increase in this effect, it is concluded that this is not toxicologically significant. Weaning rate and rearing condition were unaffected by treatment and there was no evidence of any abnormality

Alkyl esters of phosphoric acid exhibit a low to moderate acute toxicity and metabolised. From studies done on mice, they are not likely to cause gene damage or affect reproduction. However, 2-ethylhexanoic acid produced an effect on newborn rats at high doses to the pregnant female

ZINC BORATE HYDRATE

No significant acute toxicological data identified in literature search.

Acute Toxicity	×	Carcinogenicity	~
Skin Irritation/Corrosion	×	Reproductivity	✓
Serious Eye Damage/Irritation	×	STOT - Single Exposure	×
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

— Data either not available or does not fill the criteria for classification
 — Data available to make classification

SECTION 12 Ecological information

Toxicity

Version No: 2.1

KBS COATING BRUSHABLE	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
	BCF	1008h	Fish	0.8-2.8	7
	EC50(ECx)	96h	Algae or other aquatic plants	4mg/l	1
tris(2-	ErC50	72h	Algae or other aquatic plants	4mg/l	1
chloroisopropyl)phosphate	LC50	96h	Fish	11mg/l	2
	EC50	72h	Algae or other aquatic plants	33mg/l	2
	EC50	48h	Crustacea	65335mg/l	1
	EC50	96h	Algae or other aquatic plants	4mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	768h	Fish	0.009mg/l	2
	LC50	96h	Fish	1.793mg/l	2
zinc borate hydrate	EC50	72h	Algae or other aquatic plants	40.2mg/l	2
	EC50	48h	Crustacea	1mg/l	2
	EC50	96h	Algae or other aquatic plants	15.4mg/l	2
Legend:	V3.12 (QSAR)	- Aquatic Toxicity Data (Estimated) 4.	HA Registered Substances - Ecotoxicological Informatio JS EPA, Ecotox database - Aquatic Toxicity Data 5. ECI 1 (Japan) - Bioconcentration Data 8. Vendor Data		

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Environmental Fate: Chlorinated trisphosphates have low volatility thus there is low potential for transport into the air. Some trisphosphates may enter the waste water system through disposal of water containing trisphosphates from washed fabrics. These compounds are generally not biodegraded.

Atmospheric Fate: When released in the atmosphere, trisphosphates are degraded by reaction with atmospheric hydroxyl radicals.

Aquatic Fate: Trisphosphates are not biodegraded under aerobic condition. Chlorinated trisphosphates may enter the water system through seepage of landfill leachate that contains degraded polyurethane foam and polyester.

Terrestrial Fate: Trisphosphates have high affinity to organic components of soils and sediments. But due to high water solubility of these compounds, mobility in and from soil media will be high.

Ecotoxicity: Toxicity tests show that chlorinated trisphosphates such as TCEP and TCPP are slightly toxic to aquatic organisms at all trophic level, while TDCPP is moderately toxic to fish. Moreover, these compounds are found to be slightly toxic to terrestrial species and aquatic green algae but they are non-toxic to sewage bacteria.

Version No: 2.1

Page 9 of 11

KBS COATING BRUSHABLE

Issue Date: **07/12/2021**Print Date: **16/12/2021**

DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
tris(2-chloroisopropyl)phosphate	HIGH	HIGH

Bioaccumulative potential

Ingredient	Bioaccumulation	
tris(2-chloroisopropyl)phosphate	LOW (BCF = 4.6)	

Mobility in soil

Ingredient	Mobility
tris(2-chloroisopropyl)phosphate	LOW (KOC = 1278)

SECTION 13 Disposal considerations

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ▶ Return to supplier for reuse/ recycling if possible

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- ▶ Reuse
- ► Recycling
- Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group	
tris(2-chloroisopropyl)phosphate	Not Available	
zinc borate hydrate	Not Available	

Transport in bulk in accordance with the ICG Code

•	
Product name	Ship Type
tris(2-chloroisopropyl)phosphate	Not Available
zinc borate hydrate	Not Available

SECTION 15 Regulatory information

 Page 10 of 11
 Issue Date: 07/12/2021

 KBS COATING BRUSHABLE
 Print Date: 16/12/2021

tris(2-chloroisopropyl)phosphate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australian Inventory of Industrial Chemicals (AIIC)

zinc borate hydrate is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4

Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

Version No: 2.1

National Inventory	Status	
Australia - AIIC / Australia Non-Industrial Use	Yes	
Canada - DSL	Yes	
Canada - NDSL	No (tris(2-chloroisopropyl)phosphate; zinc borate hydrate)	
China - IECSC	Yes	
Europe - EINEC / ELINCS / NLP	Yes	
Japan - ENCS	Yes	
Korea - KECI	Yes	
New Zealand - NZIoC	Yes	
Philippines - PICCS	Yes	
USA - TSCA	Yes	
Taiwan - TCSI	Yes	
Mexico - INSQ	Yes	
Vietnam - NCI	Yes	
Russia - FBEPH	Yes	
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.	

SECTION 16 Other information

Revision Date	07/12/2021
Initial Date	07/12/2021

SDS Version Summary

Version	Date of Update	Sections Updated
2.1	07/12/2021	Appearance, Exposure Standard, First Aid (skin), Personal Protection (Respirator), Personal Protection (eye), Storage (storage incompatibility), Storage (storage requirement), Storage (suitable container), Toxicity and Irritation (Other), Use

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

 ${\sf PC-TWA: Permissible \ Concentration-Time \ Weighted \ Average}$

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory

KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances Chemwatch: 5517-11 Page 11 of 11 Issue Date: 07/12/2021 Print Date: 16/12/2021

Version No: 2.1

KBS COATING BRUSHABLE

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. TEL (+61 3) 9572 4700.